PHYSICAL REVIEW E 69, 011104 (2004

Model for striped growth
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We introduce a model for describing the defected growth of striped patterns. This model, while roughly
related to the Swift-Hohenberg model, generates a quite different mixture of defects during phase ordering. We
find two characteristic lengths in the system: the scaling lehgth, and the average width of the domain
walls. The growth law exponent is larger than the value of 1/2 found in typical point defect systems.
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[. INTRODUCTION the nonlinear phaséNLP) model, for growing stripes. It is
motivated as an approximation to SH model. However the

Our understanding of the growth of striped patterns after anodel grows stripes via a quite different defect structure
temperature quench from an isotropic state remains limitegompared to the SH model, but shares with it the character-
[1-8]. We do not have the simple standard scenario of poiniStiC feature of grain boundaries. This model could also, as
defect annihilation observed in systems like th¥ model  With the SH model, be constructed by appeal to symmetry,
[9] where there is ordering ending in a homogeneous phasé&implicity, and analyticity.
Instead we have pattern coarsening via a competition be- There appears to be a variety of pathways to equilibrium
tween point and line defects constructed from buildingin these systems. One may need to appeal to more than just
blocks of dislocations and disclinations. Experiments and nusymmetry and analyticity to obtain a quantitative description
merical simulations for simple models are in agreement tha®f the ordering process in striped systems.
there is scaling in stripe forming systems governed by a char-
acteristic length or growth law, (t)~t*, with an exponent [l. THE NONLINEAR PHASE MODEL
x=~(1/4)—(1/3)[8]. This exponent is smaller than one would
expect from the simplest theoretical treatments which give
x~1/2. A convincing theoretical understanding of the values"
of x for isotropic pattern forming systems is still lacking. A
complication is that there may not be a well defined value for

x, but, as found in numerical treatments,may depend \yhere y is a real scalar field. We only consider the zero
weakly on a control parameter. temperature case in this paper, so there is no noise term in

When we turn to the defect structures we find lack ofihe ahove equation. Assume that the solution of the SH
agreement between models and experiments. Experimentalloqel can be written in the single mode fofag]

the study of stripe formation has taken a substantial step

forward with the work of Harrisoret al. [10] on carefully P, 1) = hocod k(X,1)], 2

prepared two-dimensional diblock copolymer systems which

order into striped systems appearing to be two dimensionakhere the amplitude, saturates quickly at the ground state

smectics. For quenches into the appropriate temperaturgmplitude/4e/3. Substituting this ansatz into the SH equa-

range they find ordering which proceeds, in the scaling retion, ignoring amplitude fluctuations and higher harmonics,

gime, via the process of the annihilation of a set of disclinawe find that the coefficient ofyysin x(x,t)] satisfies

tion quadrupoles. They also find that characteristic growth

laws grow in timeL (t) ~t* with exponentx= 1/4. —k=Vi[V?Q;+2(1-Q%Q|], 3
The Swift-Hohenburg(SH) model [see Eq.(11) below]

[11] represents a simple model for producing stripe patternwhere

growth. In a previous pap¢8] we discussed the distribution

of defects(grain boundaries and point defectghich govern Q(x,t) =V r(x,t) 4

the ordering in the SH model in two dimensions. We found )

[8] the kinetics dominated by grain boundaries with a smalliS the local wave number of the stripes. EquatiBncan be

number of free dislocations and a smaller number of fregvritten as

disclinations. Thus the simplest model, the SH model, does

not produce the defect structure seen in the experiments. : oF (5)
The Ohta-Kawasaki mode[12] is derived from the 0K

diblock copolymer system. Christensen and Bfay have _

pointed out that this model has the same growth exponent aaith

in the experiment. But the defect structures produced by this

model have not yet been fully studied. :f 2 1 2,24 E 2_ 1712
In this paper we present an alternative model description, Hxl d X[Z(V ) 2[(VK) W ®

The nonlinear phase model can be obtained as an approxi-
ate phase-field model for the SH model defined by

dp=ep—(V2+1)2—y?, (1)
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FIG. 1. cox>0 att=1000 in a 51X 512 system. FIG. 3. cox>0 att=15000 in a 51X 512 system.

If we take the gradient with respect ¥, Eq. (3) can be Ill. NUMERICAL RESULTS
written in the form _
A. Qualitative results
OHe Let us begin with a qualitative description of the patterns
5Q;’ generated by this model. We put E@) on a lattice with
spacingAr =0.7854 and time step 0.01. We use the isotropic
where the driving free energy is of the standard Ginzburgform for the Laplacian given by
Landau form

HQi=WiV ()

L 10
6 3

2 2, _
Vep(r,t)—Vag;= oy

®ij
9

1 1
¢VQV+¢QL4ﬂEf¥xdm. (an)?

8

Except for the fact theQ is longitudinal and one has an Where NN and NNN denote the nearest neighbors and next-

anisotropic diffusion tensorW{V; rather thanv2s;), this ~ Nnearest neighbors, respectivefycan be the order parameter
would just be the TDGL model for a conserved vector ordetof « or the component o®. (i, ) is the lattice-site position.
parameter. The mode{nonlinear phase model or NLP We run these equations on lattice of various sizes using ini-
mode) defined by Eqgs(2), (3), and (4) correspond, as we tial conditions where the p_ha_se variahtéi,j) is chosen to
now show, to a well defined stand alone model for producindl@ve a value randomly distributed betweenc, and «,
striped patterns. While we have roughly derived this modeWhel’e{<0=0-01/\/§=0-007 0711. _ N

from the SH model, its ordering defect structures are quite In Fig. 1 we plot those points where cess positive for a
different from the SH model. system, which is on a 52512 grid, after an evolution to
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FIG. 2. cosx>0 att=5000 in a 51X 512 system. FIG. 4. cosx>0 att=25000 in a 51X 512 system.
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FIG. 5. The pattern formed by the points where go9 att ] o
=15000 in a 51%512 system. Those points with a Sm@? are FIG. 7. ThEQ field for the system in Flg. @&,=800. The vector
also shown. on each site is shown.

time t=1000. The stripe wave numb&? orders very rap- found by looking for positions where the amplitu¥ is
idly so that by the time=1000 we have an interconnected significantly smaller than its ordered val@§=1.
pattern of basically compact objects. These appear to be In Fig. 5 we plot those points whe@?<0.5 for the pat-
nucleated objects with radial symmetry. This is a faiffjg.  tern in Fig. 3. We see that we have a rather complete map of
2) early time for this system and we see that we have genthe defect structure seen in the layer pattern. The small am-
erated a set of local donuts. We have many concentric circleglitude lines(SAL) network defines the pattern.
with few direct paths through the system. We clearly have In Fig. 6 we plot the pattern cas>0 and«(x) for a 64
layers but they are strongly bent. X 64 system at=_800. Clearly the peaks and antipeaks cor-
When we reach a time of 5000 we see that most of theespond to the target centers of the patternscosnd the
donuts have opened and stripes are forming and windingdges correspond to the SAL network. We also observe that
through the system. Clearly we see that the remaining certhe peaks and antipeaks correspond to-tHevortices in the
ters of the donuts are serving as cores for large disclination® field, and on some of the edges there is & vortex of the
This pattern coarsens as one moves+d 5000, as shown in  Q field, as is shown in Fig. 7. The numbers-6fL and—1
Fig. 3, and Fig. 4 where=25000. In Fig. 4 one sees a target vortices are equal, while the numbers of the peédsti-
pattern in the upper left. One expects this to eventually breakeaks and the edges are usually not equal, so not every edge
open. has a—1 vortex on it.
These patterns can, at later times, be rather completely The + 1 vortices are compact but thel vortices are not.
characterized by their defect structure. The defects can bEhis can be seen in Fig. 7, where some of th& vortices
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FIG. 6. The first figure shows the points where &0 for a 64X 64 system at=800. The second figure shows the vak(e) for the
same system at the same time.
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FIG. 8. The correlation functio (r,t) for the 256< 256 sys- - 1U.(K : : g

tem is plotted, for eight different times, in scaling form. The dis- runs.
tancer is scaled by =T given in Fig. 9. At least at smail the

function has a scaling form. The data is averaged over 41 runs.

occupy entire edges. So the defects in the system are mofjg
like a domain-wall network rather than a set of vortices. The®

domain walls correspond to the edges in Fig. 6.

B. Quantitative results

We measure next the number of defects in the system as a

function of time after the quench. In Fig. 11 we plot the

n,=at",

nsity of sites wher€?<0.4 in the scaling regime. This
urve is well fit by

(10

with a=3.89, n=0.506. Since the total number of the de-
_ _ fects is proportional to the area of domain walls, the number
At long times after a quench, phase ordering systems typidensity is proportional tavL/L?=wL", wherew is the

cally enter a scaling regime with a single characteristicaverage width of the domain walls. Thus we estimiastes
lengthL. Here we check scaling for the correlation function 0.5

C(r,)=(x(x+r,1) x(x)). In Fig. 8, we show this correla- |t will turn out to be necessary to allow the widtito be
tion function at eight different times. The data is scaled soy function of time.

that we can see whether it obeys a scaling law. The correla- e need an independent method for determiningFig.

tion length can be extracted fro@,(rq,t)/C,(0t)=1/2
where rocL. The result is shown in Fig. 9. Sind& «|
~const, we expect that~L andC,(0t)=(x?)~L2. Thus
we expect the scaling for@,(r,t)=L2F(r/L). The direct
measurement ofx?) is shown in Fig. 10. From Fig. 9, we

getL~t%%% From Fig. 10, we also obtaih~t%6°

12) or win the context of defect points density. We do this by
employing another method to measure the length of the de-
fect network directly. Basically this is a coarse-graining
method. We put the defect network on a lattice with lattice
spacing &r and count the number of sites it occupies. This

number reflects the length of the network much better than
the previous measurement. Other sizes of the lattice spacing

100 ——— can also be used as long as the grid size is larger than the
T
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FIG. 9. We extract the correlation length from

C,(ro,t)/C(0t)=12/2. rq=Lyg; is proportional toL. We find L

~1969 Averaged over 41 runs.

over 38 runs.
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FIG. 11. Density of the defect points whe@#<0.4. Averaged
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FIG. 12. Length density of the defect points where the length of FIG. 14. The energy density of the system. Averaged over 20
the network is in fact the number of sites that the network occupieguns.
in the lattice with larger grid. The dashed line is proportional to
t=90 Averaged over 38 runs. In the shorter time regime 108G<7000 the data are fit

with a=0.930, b=3.15, andn=0.45. In the longer time

width of the domain walls and much smaller than their"®9ime 7508t<10000 we have the fita=0.950, b
lengths. The length density of the network is shown below~ 2-40, anh=0.511. In both fits the exponents near 1/2.
and can be fit to~t %% Since the length density is propor- We also see that in both fits the final value @f is larger
tional to L/L2=L"1, we getL~t%% which is consistent than 1. Clearly more work needs to be done to establish the
with the measurement of the correlation function. nature of this cross over. It seems likely that the final
We can then conclude that the average width of the do@Symptotic value oR? is greater than one due to finite size
main wallsw~t% In the time regime we study, the width effects and the freezing of grain boundaries for long times.

. 2 . .
w is about 2—4. We don't thinkv will increase for ever, it In this system,Q® is approximately 1 away from the
may stop increasing at some later stage. But before that cdfPmain-wall network and small on the domain walls with an
happen in our system, finite size effect enters. averagec<l. Because the average arsaf the domain

The growth laws forL and w can explain the growth walls in one domain is proportional teL, and the domain’s
H 2
exponents of other quantities. We give two examples below@'€@ iSA~L*, we have
(Q?) and the energy density in Eq. (8). .
The ordering of the fiel® is characterized by the average (Q%)=~[(A-s)(1+s0)]=1—(1—c) S (12)
over all sites 0fQ?(i,j). We obtain the results shown in Fig. A A’

13. It can be seen in the figure that there are two regimes
where the data can be fit to a form wheres/AxwL™!. So the average of? has the form of

(Q?)—Q3~w/L. Thus we can identify./w~t°5,
In Fig. 14 we show the path toward equilibration of the

a1 11 effective energy densitg defined by Eq.(8). This result
(Q9)= at+bt "’ (1D seems to be in agreement with that @f. We have a good
fit to
e T e=a+bt™", (13

with a=0.0056,b=2.526 andn=0.5288. Since the energy
above the ground state should be proportional to the area of
the domain walls, the energy density is proportional to

0.95 wL/L2=wL"1. Again we getl/w~t°?,

@)

IV. DISCUSSION
09H f!

In the NLP model we know that there are analytic vortex
solutions related to those for tieY model. This would seem

085 T to favor coarsening via a set of isolated vortices which pair
v up and annihilate. Instead we find largel vortices forming
0 2000 4000 6000 8000 10000 a domain-wall network
Time . ) . .
This system does not appear to generate dislocations and,
FIG. 13.(Q?) vst. Averaged over 20 runs. as such, is quite different from the SH model which has a

011104-5



H. QIAN AND G. F. MAZENKO PHYSICAL REVIEW E 69, 011104 (2004

significant density of dislocations. The nonlinear phase In conclusion we see that models with the same symme-
model, on a larger scale, is growing targets and disclinationgries can vary significantly in the defect structures produced
The NLP model introduced here helps to deepen our feelduring ordering. The search continues for models where one
ing that we do not have a good understanding of the generaan dial the relative abundance of grain boundaries and free
mechanism of stripe formation. In the SH model and thegislocations and disclinations. The ultimate goal is to match
appropriate experiments the ordering is slow compared withhe models with a given experimental system.
the simple model of point defect annihilation. In this NLP
model the ordering is “faster” than the simple model.
In this model we find two characteristic lengthsandw, ACKNOWLEDGMENT
which together explain the different exponents we observed.
In the SH model, we also observed different expon¢8is

Our guess is that in SH model there are also more than one | NS Work was supported by the National Science Foun-
characteristic length. dation under Contract No. DMR-0099324.
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