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Model for striped growth
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~Received 31 July 2003; published 26 January 2004!

We introduce a model for describing the defected growth of striped patterns. This model, while roughly
related to the Swift-Hohenberg model, generates a quite different mixture of defects during phase ordering. We
find two characteristic lengths in the system: the scaling lengthL(t), and the average width of the domain
walls. The growth law exponent is larger than the value of 1/2 found in typical point defect systems.
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I. INTRODUCTION

Our understanding of the growth of striped patterns afte
temperature quench from an isotropic state remains lim
@1–8#. We do not have the simple standard scenario of po
defect annihilation observed in systems like theXY model
@9# where there is ordering ending in a homogeneous ph
Instead we have pattern coarsening via a competition
tween point and line defects constructed from buildi
blocks of dislocations and disclinations. Experiments and
merical simulations for simple models are in agreement
there is scaling in stripe forming systems governed by a c
acteristic length or growth law,L(t)'tx, with an exponent
x'(1/4) –(1/3)@8#. This exponent is smaller than one wou
expect from the simplest theoretical treatments which g
x'1/2. A convincing theoretical understanding of the valu
of x for isotropic pattern forming systems is still lacking.
complication is that there may not be a well defined value
x, but, as found in numerical treatments,x may depend
weakly on a control parameter.

When we turn to the defect structures we find lack
agreement between models and experiments. Experimen
the study of stripe formation has taken a substantial s
forward with the work of Harrisonet al. @10# on carefully
prepared two-dimensional diblock copolymer systems wh
order into striped systems appearing to be two dimensio
smectics. For quenches into the appropriate tempera
range they find ordering which proceeds, in the scaling
gime, via the process of the annihilation of a set of disclin
tion quadrupoles. They also find that characteristic grow
laws grow in timeL(t)'tx with exponentx51/4.

The Swift-Hohenburg~SH! model @see Eq.~11! below#
@11# represents a simple model for producing stripe patt
growth. In a previous paper@8# we discussed the distributio
of defects~grain boundaries and point defects! which govern
the ordering in the SH model in two dimensions. We fou
@8# the kinetics dominated by grain boundaries with a sm
number of free dislocations and a smaller number of f
disclinations. Thus the simplest model, the SH model, d
not produce the defect structure seen in the experiments

The Ohta-Kawasaki model@12# is derived from the
diblock copolymer system. Christensen and Bray@3# have
pointed out that this model has the same growth exponen
in the experiment. But the defect structures produced by
model have not yet been fully studied.

In this paper we present an alternative model descript
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the nonlinear phase~NLP! model, for growing stripes. It is
motivated as an approximation to SH model. However
model grows stripes via a quite different defect structu
compared to the SH model, but shares with it the charac
istic feature of grain boundaries. This model could also,
with the SH model, be constructed by appeal to symme
simplicity, and analyticity.

There appears to be a variety of pathways to equilibri
in these systems. One may need to appeal to more than
symmetry and analyticity to obtain a quantitative descript
of the ordering process in striped systems.

II. THE NONLINEAR PHASE MODEL

The nonlinear phase model can be obtained as an app
mate phase-field model for the SH model defined by

] tc5ec2~¹211!2c2c3, ~1!

where c is a real scalar field. We only consider the ze
temperature case in this paper, so there is no noise term
the above equation. Assume that the solution of the
model can be written in the single mode form@13#

c~x,t !5c0cos@k~x,t !#, ~2!

where the amplitudec0 saturates quickly at the ground sta
amplitudeA4e/3. Substituting this ansatz into the SH equ
tion, ignoring amplitude fluctuations and higher harmoni
we find that the coefficient ofc0sin@k(x,t)# satisfies

2k̇5¹j@¹2Qj12~12Q2!Qj #, ~3!

where

Q~x,t !5¹k~x,t ! ~4!

is the local wave number of the stripes. Equation~3! can be
written as

k̇52
dF
dk

, ~5!

with

F@k#5E d2x H 1

2
~¹2k!21

1

2
@~“k!221#2J . ~6!
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If we take the gradient with respect to¹i , Eq. ~3! can be
written in the form

] tQi5¹i¹j

dHE

dQj
, ~7!

where the driving free energy is of the standard Ginzbu
Landau form

HE@Q#5E d2xF1

2
~“•Q!21

1

2
~Q221!2G[E d2x e~x!.

~8!

Except for the fact theQ is longitudinal and one has a
anisotropic diffusion tensor (¹i¹j rather than¹2d i j ), this
would just be the TDGL model for a conserved vector ord
parameter. The model~nonlinear phase model or NLP
model! defined by Eqs.~2!, ~3!, and ~4! correspond, as we
now show, to a well defined stand alone model for produc
striped patterns. While we have roughly derived this mo
from the SH model, its ordering defect structures are qu
different from the SH model.

FIG. 1. cosk.0 at t51000 in a 5123512 system.

FIG. 2. cosk.0 at t55000 in a 5123512 system.
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III. NUMERICAL RESULTS

A. Qualitative results

Let us begin with a qualitative description of the patter
generated by this model. We put Eq.~3! on a lattice with
spacingDr 50.7854 and time step 0.01. We use the isotro
form for the Laplacian given by

¹2f~r ,t !→¹2f i j 5
1

~Dr !2 F2

3 (
NN

1
1

6 (
NNN

2
10

3 Gf i j ,

~9!

where NN and NNN denote the nearest neighbors and n
nearest neighbors, respectively.f can be the order paramete
of k or the component ofQ. (i , j ) is the lattice-site position.
We run these equations on lattice of various sizes using
tial conditions where the phase variablek( i , j ) is chosen to
have a value randomly distributed between2k0 and k0,
wherek050.01/A250.007 0711.

In Fig. 1 we plot those points where cosk is positive for a
system, which is on a 5123512 grid, after an evolution to

FIG. 3. cosk.0 at t515000 in a 5123512 system.

FIG. 4. cosk.0 at t525000 in a 5123512 system.
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time t51000. The stripe wave numberQ2 orders very rap-
idly so that by the timet51000 we have an interconnecte
pattern of basically compact objects. These appear to
nucleated objects with radial symmetry. This is a fairly~Fig.
2! early time for this system and we see that we have g
erated a set of local donuts. We have many concentric cir
with few direct paths through the system. We clearly ha
layers but they are strongly bent.

When we reach a time of 5000 we see that most of
donuts have opened and stripes are forming and wind
through the system. Clearly we see that the remaining c
ters of the donuts are serving as cores for large disclinati
This pattern coarsens as one moves tot515000, as shown in
Fig. 3, and Fig. 4 wheret525000. In Fig. 4 one sees a targ
pattern in the upper left. One expects this to eventually br
open.

These patterns can, at later times, be rather comple
characterized by their defect structure. The defects can

FIG. 5. The pattern formed by the points where cosk.0 at t
515000 in a 5123512 system. Those points with a smallQ2 are
also shown.
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found by looking for positions where the amplitudeQ2 is
significantly smaller than its ordered valueQ0

251.
In Fig. 5 we plot those points whereQ2,0.5 for the pat-

tern in Fig. 3. We see that we have a rather complete ma
the defect structure seen in the layer pattern. The small
plitude lines~SAL! network defines the pattern.

In Fig. 6 we plot the pattern cosk.0 andk(x) for a 64
364 system att5800. Clearly the peaks and antipeaks c
respond to the target centers of the pattern cosk, and the
edges correspond to the SAL network. We also observe
the peaks and antipeaks correspond to the11 vortices in the
Q field, and on some of the edges there is a21 vortex of the
Q field, as is shown in Fig. 7. The numbers of11 and21
vortices are equal, while the numbers of the peaks~anti-
peaks! and the edges are usually not equal, so not every e
has a21 vortex on it.

The11 vortices are compact but the21 vortices are not.
This can be seen in Fig. 7, where some of the21 vortices

FIG. 7. TheQ field for the system in Fig. 6,t5800. The vector
on each site is shown.
FIG. 6. The first figure shows the points where cosk.0 for a 64364 system att5800. The second figure shows the valuek(x) for the
same system at the same time.
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occupy entire edges. So the defects in the system are m
like a domain-wall network rather than a set of vortices. T
domain walls correspond to the edges in Fig. 6.

B. Quantitative results

At long times after a quench, phase ordering systems t
cally enter a scaling regime with a single characteris
lengthL. Here we check scaling for the correlation functio
Ck(r ,t)5^k(x1r ,t) k(x)&. In Fig. 8, we show this correla
tion function at eight different times. The data is scaled
that we can see whether it obeys a scaling law. The corr
tion length can be extracted fromCk(r 0 ,t)/Ck(0,t)51/2
where r 0}L. The result is shown in Fig. 9. Sinceu“ku
;const, we expect thatk;L andCk(0,t)5^k2&;L2. Thus
we expect the scaling formCk(r ,t)5L2 F(r /L). The direct
measurement of̂k2& is shown in Fig. 10. From Fig. 9, we
get L;t0.60. From Fig. 10, we also obtainL;t0.60.

FIG. 8. The correlation functionCk(r ,t) for the 2563256 sys-
tem is plotted, for eight different times, in scaling form. The d
tancer is scaled byLHal f5r 0 given in Fig. 9. At least at smallr, the
function has a scaling form. The data is averaged over 41 runs

FIG. 9. We extract the correlation length from
Ck(r 0 ,t)/Ck(0,t)51/2. r 05LHal f is proportional toL. We find L
;t0.60. Averaged over 41 runs.
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We measure next the number of defects in the system
function of time after the quench. In Fig. 11 we plot th
density of sites whereQ2,0.4 in the scaling regime. This
curve is well fit by

nv5a t2n, ~10!

with a53.89, n50.506. Since the total number of the d
fects is proportional to the area of domain walls, the num
density is proportional towL/L25wL21, where w is the
average width of the domain walls. Thus we estimateL/w
;t0.5.

It will turn out to be necessary to allow the widthw to be
a function of time.

We need an independent method for determiningL ~Fig.
12! or w in the context of defect points density. We do this
employing another method to measure the length of the
fect network directly. Basically this is a coarse-grainin
method. We put the defect network on a lattice with latti
spacing 8Dr and count the number of sites it occupies. Th
number reflects the length of the network much better th
the previous measurement. Other sizes of the lattice spa
can also be used as long as the grid size is larger than

FIG. 10. ^k2&}t1.20. SoL2;t1.20andL;t0.60. Averaged over 41
runs.

FIG. 11. Density of the defect points whereQ2,0.4. Averaged
over 38 runs.
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width of the domain walls and much smaller than th
lengths. The length density of the network is shown bel
and can be fit to;t20.60. Since the length density is propo
tional to L/L25L21, we get L;t0.60, which is consistent
with the measurement of the correlation function.

We can then conclude that the average width of the
main wallsw;t0.10. In the time regime we study, the widt
w is about 2–4. We don’t thinkw will increase for ever, it
may stop increasing at some later stage. But before that
happen in our system, finite size effect enters.

The growth laws forL and w can explain the growth
exponents of other quantities. We give two examples bel
^Q2& and the energy densitye in Eq. ~8!.

The ordering of the fieldQ is characterized by the averag
over all sites ofQ2( i , j ). We obtain the results shown in Fig
13. It can be seen in the figure that there are two regim
where the data can be fit to a form

^Q2&5
1

a1bt2n
. ~11!

FIG. 12. Length density of the defect points where the length
the network is in fact the number of sites that the network occup
in the lattice with larger grid. The dashed line is proportional
t20.60. Averaged over 38 runs.

FIG. 13. ^Q2& vs t. Averaged over 20 runs.
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In the shorter time regime 1000<t<7000 the data are fi
with a50.930, b53.15, andn50.45. In the longer time
regime 7500<t<10 000 we have the fita50.950, b
52.40, andn50.511. In both fits the exponentn is near 1/2.
We also see that in both fits the final value ofQ2 is larger
than 1. Clearly more work needs to be done to establish
nature of this cross over. It seems likely that the fin
asymptotic value ofQ2 is greater than one due to finite siz
effects and the freezing of grain boundaries for long time

In this system,Q2 is approximately 1 away from the
domain-wall network and small on the domain walls with
averagec,1. Because the average areas of the domain
walls in one domain is proportional towL, and the domain’s
area isA;L2, we have

^Q2&5
1

A
@~A2s!~11sc!#512~12c!

s

A
, ~12!

where s/A}wL21. So the average ofQ2 has the form of
^Q2&2Q0

2;w/L. Thus we can identifyL/w;t0.5.
In Fig. 14 we show the path toward equilibration of th

effective energy densitye defined by Eq.~8!. This result
seems to be in agreement with that forQ2. We have a good
fit to

e5a1bt2n, ~13!

with a50.0056,b52.526 andn50.5288. Since the energ
above the ground state should be proportional to the are
the domain walls, the energy density is proportional
wL/L25wL21. Again we getL/w;t0.5.

IV. DISCUSSION

In the NLP model we know that there are analytic vort
solutions related to those for theXY model. This would seem
to favor coarsening via a set of isolated vortices which p
up and annihilate. Instead we find large21 vortices forming
a domain-wall network.

This system does not appear to generate dislocations
as such, is quite different from the SH model which has

f
s

FIG. 14. The energy density of the system. Averaged over
runs.
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significant density of dislocations. The nonlinear pha
model, on a larger scale, is growing targets and disclinatio

The NLP model introduced here helps to deepen our f
ing that we do not have a good understanding of the gen
mechanism of stripe formation. In the SH model and
appropriate experiments the ordering is slow compared w
the simple model of point defect annihilation. In this NL
model the ordering is ‘‘faster’’ than the simple model.

In this model we find two characteristic lengths,L andw,
which together explain the different exponents we observ
In the SH model, we also observed different exponents@8#.
Our guess is that in SH model there are also more than
characteristic length.
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In conclusion we see that models with the same symm
tries can vary significantly in the defect structures produc
during ordering. The search continues for models where
can dial the relative abundance of grain boundaries and
dislocations and disclinations. The ultimate goal is to ma
the models with a given experimental system.

ACKNOWLEDGMENT

This work was supported by the National Science Fo
dation under Contract No. DMR-0099324.
et-
nce
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